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Abstract--Condensation heat transfer and the structure of the dispersed, two-phase, two-component 
boundary layer are studied under forced convection conditions. An approximate analytical relation is 
found between the profiles of droplet mass fraction and temperature in the boundary layer. In the case 
of small temperature differences, the droplet mass fraction decreases for Le < I (Lewis number) and 
increases for Le > 1 as the temperature decreases in the condensation boundary layer. For higher 
temperature differences, the droplet mass fraction grows rapidly near the interface for all values of Le. 
The saturation condition imposed all over the boundary layer by previous authors cannot be fulfilled for 
Le < 1 unless the main stream droplet mass fraction is higher than a certain minimum value determined 
in this paper. The heat flux transferred to the wall is only slightly affected by droplets being present in 
the boundary layer. 
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I N T R O D U C T I O N  

Forced convection condensation on a flat plate in the presence of a non-condensing gas has 
been studied by many authors (e.g. Sparrow et al. 1967; Hijikata & Mori 1973; Legay-Desesquelles 
1984; Legay-Desesquelles & Prunet-Foch 1985, 1986). The main goal of these papers has been 
to calculate the mass and heat fluxes transferred to the plate. The laminar boundary layer 
equations have been solved in different ways and sometimes contradictory assumptions have been 
employed. 

In the work by Sparrow et al. (1967) it was assumed that the vapour was saturated in the main 
stream and on the interface between the gas phase and liquid film. No other assumptions have been 
made concerning the thermodynamic state of the vapour in the boundary layer. In particular, the 
possibility of droplet formation has not been considered. Furthermore, the thin film approximation 
has been made based on the results of Cess (1960) and Koh (1962). 

Another approach was adopted in the paper by Hijikata & Moil (1973). They assumed that the 
vapour is saturated throughout the boundary layer and that droplets appear to avoid any 
metastable state of vapour. The appearance of droplets in the boundary layer results in a 
considerable complication of the model. So, to facilitate the main task of the heat flux calculation, 
the authors solved two-phase boundary layer equations by means of the integral method. 
Moreover, they neglected the heat resistance of the film, assuming that the temperature of the 
interface between the liquid film and dispersed two-phase medium was equal to the temperature 
of the plate surface. The same assumptions have been adopted by Legay-Desesquelles (1984) and 
Legay-Desesquelles & Prunet-Foch (1985, 1986). However, they numerically solved the two-phase 
boundary layer equations by a finite difference method. 

Still another approach to the thermodynamic modelling of the boundary layer has been proposed 
by Poinsot & Huetz (1985) and Sekuli6 (1985) for somewhat different problems. Poinsot & Huetz 
(1985) studied the condensation of quiescent vapour in the presence of non-condensing gas on a 
cylindrical surface and Sekuli6 (1985) investigated the problem of free convection condensation in 
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the presence of non-condensing gas on a vertical cryosurface. In both papers, the so-called critical 
supersaturation model of homogeneous nucleation (Abraham, 1974) was applied for the problem 
of fog formation. However, the experimental observations of Sekuli6 (1985) showed that droplets 
had formed at some supersaturation much less than the critical supersaturation. This has been 
attributed to heterogeneous nucleation in the boundary layer. Thus, the critical supersaturation 
model for fog formation in the boundary layer may be considered an extreme case which is 
applicable only for substances of extremely high purity. However, for most practical applications, 
it is quite reasonable to assume that droplets appear at the supersaturation line (i.e. at 
supersaturation = 1). Thus, the critical supersaturation model will not be considered in this 
paper. 

The single-phase model (Sparrow et  al. 1967) and the critical supersaturation model (Poinsot & 
Huetz 1985; Sekuli6 1985) represent two extreme cases for the physical picture of the condensation 
boundary layer. It would seem that the physical assumption adopted in Hijikata & Mori (1973), 
Legay-Desesquelles (1984) and Legay-Desesquelles & Prunet-Foch (1985, 1986) (i.e. vapour 
saturation over the entire boundary layer and droplet formation to avoid any metastable state of 
vapour) was the best one for the problems of forced convection condensation in the presence of 
non-condensing gas. However, Hijikata & Mori (1973) pointed out that, in the case of Le < 1 
(Lewis number) and for low temperature differences, a condensing vapour is in a superheated state 
in the single-phase boundary layer. However, they did not show any numerical results to support 
such a statement. Further, no attention has been given to this problem in Legay-Desesquelles (1984) 
and Legay-Desesquelles & Prunet-Foch (1985, 1986), where no numerical values of droplet mass 
fraction were presented. At the same time, droplets were not observed in the experiments with a 
steam--air mixture (Legay-Desesquelles 1984) unless the temperature difference was >20K. 
Clement (1985) investigated an aerosol growth or evaporation induced by heat and mass transfer 
in the presence of non-condensing gas. According to a qualitative analysis of balance equations 
he concluded that in the case of wall cooling the aerosol evaporates when Le < 1 (e.g. steam-air 
mixture) and grows when Le > I. The qualitative results of Clement (1985) were confirmed by the 
results of a numerical solution of the one-dimensional, non-stationary problem for a steam-air 
mixture (Barrett & Clement 1986). 

These results compel someone who wishes to deal with forced convection condensation in 
the presence of non-condensing gas to examine carefully the intrinsic consistency of the models 
based on the saturation condition throughout the boundary layer (Hijikata & Mori 1973; 
Legay-Desesquelles 1984; Legay-Desesquelles & Prunet-Foch 1985, 1986). Hence, an aim of this 
paper is to determine the conditions which should be fulfilled in order that vapour be saturated 
all through the boundary layer. Moreover, it is necessary to determine the validity of the 
assumption (Hijikata & Mori 1973: Legay-Desesquelles 1984, Legay-Desesquelles & Prunet-Foch 
1985, 1986) that the temperature of the interface between the dispersed two-phase medium and 
the liquid film is equal to the wall temperature. Finally, the introduction of droplets into 
the modelling of the condensation boundary layer results in a considerable complication of the 
problem and it is interesting to determine the influence of droplets on the heat flux transferred to 
the wall. 

In the following sections equations describing the homogeneous, two-phase, two- 
component boundary layer are presented. Liquid film equations are written for the thin 
film approximation (Cess 1960; Sparrow et  al. 1967). Then, balance equations on the 
interface between the liquid film and the dispersed, two-phase, two-component medium are 
presented. 

The problem has been treated in two different ways. Firstly, an approximate analytical relation 
between temperature and droplet mass fraction is found. This relation makes it possible to discuss 
the structure of the two-phase boundary layer with regard to its dependence on Le. Secondly, the 
system of equations with appropriate boundary conditions is numerically solved and profiles of 
droplet mass fraction are shown for the case of steam-air mixtures. Finally, the results of this paper 
are discussed and conclusions are formulated with special reference to the modelling of conden- 
sation boundary layers in the presence of non-condensing gas. This paper is a slightly different and 
abridged version of our previous report (Matuszkiewicz et al. 1989), where more details may be 
found. 
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FORMULATION OF THE PROBLEM 

A homogeneous fluid mixture, consisting of non-condensing gas, saturated vapour and finely 
dispersed droplets of the same substance is flowing along a flat plate (figure 1). The uniform 
temperature of the plate is lower than the temperature of the main flow. So, the vapour condenses 
on the plate and the liquid film arising on it is dragged by the shear stress. A laminar boundary 
layer develops in the region of the dispersed, two-phase, two-component medium. Quantities 
of interest are the heat flux transferred to the wall and the profile of the droplet mass fraction. 
To solve the problem it is necessary to write down the balance equations for the dispersed, 
two-phase, two-component medium, the balance equations for the liquid film and the balance 
equations for the interface between the dispersed, two-phase, two-component medium and the 
liquid film. 

GENERAL EQUATIONS OF A HOMOGENEOUS, TWO-PHASE, 
TWO-COMPONENT BOUNDARY LAYER 

In previous works (Hijikata & Mori 1973; Legay-Desesquelles 1984; Legay-Desesquelles & 
Prunet-Foch 1985, 1986) the dispersed liquid phase was considered as a third component in the 
vapour-gas-droplets mixture. However, component and phase are different notions. Components 
are parts of the medium which are mixed at a molecular level, whereas phases are the parts of the 
medium which are mixed at a macroscopic level. So, vapour and non-condensing gas are 
components in the gas phase while droplets are one of two phases in the two-phase, two-component 
medium. Accordingly, two different mass fractions should be defined for the problem at hand. The 
vapour mass fraction in the gas phase is 

P v  
~,  = - - ,  [ l]  

PG 

where p is density, the index V refers to the vapour and G refers to the gas phase. The droplet 
mass fraction in the two-phase, two-component medium is 

: ~P~, [21 
P 

where p is the density of the two-phase, two-component medium, the index L refers to the liquid 
phase and t is the volume fraction of the dispersed liquid phase. The factor e p t  is the apparent 
droplet density in the two-phase, two-component medium. 
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Figure I. Physical model and coordinate system. 
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To derive the equations of the homogeneous, two-phase, two-component boundary layer the 
following assumptions are adopted (Matuszkiewicz et al. 1989): 

1. The velocities of the gas and dispersed liquid phase are equal. 
2. The temperature of the gas and dispersed liquid phase are equal. 
3. Linear constitutive laws are valid for the homogeneous, two-phase, two- 

component medium. Cross phenomena (e.g. thermal diffusion) are negligible. 
4. Single-phase boundary layer assumptions are acceptable for the homogeneous, 

two-phase, two-component flow. 
5. Non-condensing gas does not dissolve in the liquid phase. 
6. The surface tension effect on the vapour saturation pressure is neglected. 
7. Vapour is saturated throughout the boundary layer. 
8. Presure is constant in the boundary layer. 

Assumptions I and 2 are inherent in the so-called homogeneous, two-phase flow model for a 
single-component medium and they may be adopted here for the two-component medium without 
introducing any further simplifications into the model. Assumption 3 indicates that the transport 
coefficients (i.e. dynamic viscosity and thermal conductivity) should be effective quantities for the 
homogeneous, two-phase, two-component medium. The transport coefficients of the gas phase 
(two-component mixture) are calculated from the semiempirical formula of Wilke (cf. Bird et al. 
1960) and the effective transport coefficients of the homogeneous, two-phase medium are calculated 
from the formula of Taylor (1971). Assumption 4 will be valid if the droplet diameters are much 
less than the boundary layer thickness: for a particular choice of main flow parameters that defines 
an upper limit of droplet diameter [d ~ (vx/u~)'2]. However, there is always a region near the 
leading edge where droplet diameter is of the same order of magnitude as or greater than the 
boundary layer thickness. Then, the model cannot be applied to this region. The consequences and 
validity of assumption 7 will be discussed later. 

Based on assumptions 1-8, the following equations of the homogeneous, two-phase, two-com- 
ponent boundary layer have been derived (Matuszkiewicz et al. 1989): 

continuity, 

and 

momen turn, 

diffusion, 

d--~ + p ~ + = 0; [3] 

P -d~ = ay ~ ' [4] 

p(l_f~)dco ? [ am] dr'2 
d t - ? , ) ,  P(l-fl)D-~Ty - p ( l - c o ) ~ - '  [5] 

thermal energy, 

dT dr2 3 ( a T )  
p c ~ = p L - - d - ~ + - ~ y  2~v ; [61 

where the substantial derivative reads 

d 0 0 O 
= a t  + + [7] dt 

The meaning of the symbols in [3]-[7] is as follows: t is the time; x, y are the Cartesian coordinates; 
u is the velocity component parallel to the wall; v is the velocity component perpendicular to the 
wall; p is the dynamic viscosity; D is the binary diffusivity; 2 is the thermal conductivity; c is the 
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heat capacity; L is the latent heat of evaporation; and T is the temperature. It is obvious that the 
following condition has to be fulfilled throughout the boundary layer: 

n/> 0. [81 

Equations [3] and [4] have the same form as the analogous equations of a single-phase boundary 
layer. Equations [5] and [6] differ from the analogous equations of a single-phase boundary layer 
in having source terms proportional to the substantial derivative of the droplet mass fraction. These 
source terms are due to exchange of mass and energy between the gas and dispersed liquid phase. 
The source term in the diffusion equation is small unless the droplet mass fraction is of the same 
order as the vapour mass fraction. In most cases the droplet mass fraction is many times less than 
the vapour mass fraction, so the source term in the diffusion equation will be neglected hereafter 
in this paper. Although this restricts the generality of the results, this simplification decouples the 
thermal and diffusion equations. 

EQUATIONS OF THE LIQUID FILM 

The thin film approximation (Cess 1960; Sparrow et al. 1967) is made to simplify the conservation 
equations of the liquid film. This approximation consists of neglecting inertia terms in the 
momentum equation and convective terms in the thermal energy equation. It has been proved 
(Koh 1962) that this yields very good results in the case of forced convection condensation of a 
pure vapour. The stationary equations of the liquid film take the following form (Sparrow et al. 
1967): 

continuity, 

momentum, 

and 

thermal energy, 

~UF ~/"F + ~-y = 0; [9] 

O2Uv=o; [10] 
Oy2 

a2T~ 
dy---T = 0; [{ l] 

where the index F refers to the film. Thus, it is clear that the thin film approximation involves linear 
velocity and temperature profiles. 

INTERFACE BALANCE EQUATIONS 

The equations of the homogeneous, two-phase, two-component boundary layer and the 
equations of the liquid film should be supplemented by interface balance equations. In the 
boundary layer approximation and for a slightly curved film surface they take the following form 
(Matuszkiewicz et al. 1989): 

total mass, 

momentum, 

(udO_vl= do_ 
P\ dx PL\  dx v~); [12] 

OU OU F 
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and 

mass of  non-condensing gas, 

u dg  I D oco [14] 

thermal energy, 

(ud  ) or 
( l - f ~ ) p \ - ~ x - V  L ( T ~ ) + 2 ~ - f y - .  O) ' =0;  [15] 

where 6 is the film thickness and the index i refers to the interface. Equation [14] is derived from 
assumption 5 (that the non-condensing gas does not dissolve in the liquid phase). Equations 
[12]-[14] have the same form as the corresponding equations for the interface between the liquid 
film and the single-phase, two-component boundary layer (Sparrow et al. 1967). However, the 
dynamic viscosity /z in [13] and the thermal conductivity 2 in [15] are effective, two-phase, 
two-component quantities. The thermal energy equation [I 5] differs from its single-phase counter- 
part (Sparrow et al. 1967) in involving the factor (1 - f l )  in the first term. This factor is induced 
by the fact that droplets impacting on the film surface do not release the latent heat of 
condensation. The interface balance equations need to be completed with jump conditions, i.e. 
formulae relating fluxes with discontinuities of field variables across the interface. They may be 
inferred from the irreversible thermodynamics of interfaces. They include some phenomenologicai 
coefficients which should be determined by experiments or the molecular theory of matter. Up to 
now, both methods having failed to give credible results, therefore continuity conditions (zero- 
jumps) are adopted in this paper. 

Two continuity conditions are necessary for the problem at hand. The continuity of the 
tangential component of velocity and the continuity of temperature. In the boundary layer 
approximation and for a slightly curved film surface, the continuity of the tangential component 
of velocity is expressed as follows: 

u = UF. [16] 

The continuity of temperature is 

T = Tv. [171 

It can be proved that the continuity conditions are equivalent to the assumption that 
thermodynamic processes are reversible (Delhaye 1981). 

RELATION BETWEEN T E M P E R A T U R E  AND DROPLET MASS FRACTION 

For saturated vapour, the vapour mass fraction and the temperature are not independent 
quantities. They are related in the following way: 

mpv ( T) 

co(T) = P [18] 
(I - m ) p v ( T ) '  

I 
P 

where Pv =pv(T)  is the vapour saturation pressure and m = Mv/MA is the ratio of the molar 
masses of the vapour and non-condensing gas, The saturation assumption throughout the 
boundary layer allows us to reduce the number of dependent field variables by one. Previously 
(Hijikata & Mori 1973; Legay-Desesquelles 1984; Legay-Desesquelles & Prunet-Foch 1985, 1986), 
this point has not received enough attention, though [18] was used by these authors. If a profile 
of the vapour mass fraction is known, then the temperature profile is known and thermal energy 
equation [6] is a first-order differential equation for the droplet mass fraction. 

In the general case it is not easy to find an analytical solution for the droplet mass fraction. 
However, in the special case of small temperature differences ( T ~ -  Tw), based on [5] and [6], it 
is possible to express the droplet mass fraction as a function of temperature. First, if 11 ,~ co, then 
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the source term in the diffusion equation [5] may be dropped. Then, all terms including gradients 
of the transport coefficients are neglected in the diffusion equation [5] and thermal energy equation 
[6]. The vapour mass fraction being a function of temperature, it is possible to write the following 
formula: 

02T= 1 0zo9 o9 2 (0o9"~2 [191 
0y 2 o9, 0y 2 o9~ \ 0 y  ] 

where to t and 092 are the first and second temperature derivatives of the vapour mass fraction, 
respectively. The last term on the r.h.s, of [19] is quadratic in the gradient of vapour mass fraction, 
so it may be neglected in the case of a small temperature difference. The first term on the r.h.s. 
of [19] is replaced by an expression resulting from diffusion equation [5] and then [19] may be 
transformed to the following form: 

02T 1 dw 
0y 2 = Dogj dt " [20] 

Now, inserting [20] into thermal energy equation [6] and returning to temperature as the main field 
variable, the following differential equation is obtained: 

( !  - Le) ~ -  = \ L J  dt ' [211 

Integration of [21] yields the following relation between droplet mass fraction and temperature: 

{1-{1~ = ( l -  L e ) ( L ) ( T  - Too). [22] 

The temperature difference ( T -  T~) is always negative in the condensation boundary layer. 
Thus, for: 

(l) Le < i  (e.g. a steam-air mixture), the droplet mass fraction decreases as the 
interface is approached; 

(2) Le > l (e.g. a mixture of air and ethyl alcohol vapour), the droplet mass fraction 
increases as the interface is approached; 

(3) Le-- 1, the droplet mass fraction is constant. 

If there are no droplets in the main flow, i.e. {1~ = 0, it is easily seen from [22] that droplets can 
be formed in the boundary layer only for Le > I. In the case of a steam-air mixture (Le < l), the 
case treated by Hijikata & Moil (1973), Legay-Desesquelles 0984) and Legay-Desesquelles & 
Prunet-Foch (1985, 1986), the droplet mass fraction cannot be negative as the interface is 
approached. Thus, steam is superheated and assumption 7 is no longer valid. The superheating is 
due to the fact that the saturation temperature is controlled by the diffusion and that the ratio of 
the thermal to diffusion boundary layer thickness is proportional to (Le) ~'2. 

The results obtained from [22] are compatible with the prediction of Clement 0985) and Barrett 
& Clement (1986), where aerosol grows in the case of Le > 1 and aerosol evaporates in the case 
of Le < I. 

It should be recalled that [22] has been derived by neglecting the non-linear term in the vapour 
mass fraction gradient in [19], which is true only for small temperature differences. In the general 
case this non-linear term should be included. The detailed analysis of the thermal energy equation 
[6] shows that this term is predominant for high temperature differences (Matuszkiewicz et al. 1989). 
In the case of Le < l, this term being of opposite sign to the sign of other terms in the thermal 
energy equation, it is responsible for raising the droplet mass fraction to positive values near the 
interface for ~ = 0 (cf. figures 4-6). However, the vapour is always superheated in the external 
part of the boundary layer. Hence, for Le < 1 and floo = 0, the saturation condition adopted in 
Hijikata & Mori (1973), Legay-Desesquelles (1984) and Legay-Desesquelles & Prunet-Foch 
(1985, 1986) is not to be fulfilled over all the condensation boundary layer. 

If vapour is not saturated, [I 8] can still be used to relate the vapour mass fraction to the vapour 
partial pressure. However, the vapour mass fraction and temperature are independent variables in 
this case and it is not possible to eliminate one of them from the diffusion equation and thermal 
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energy equation• The problem of condensation in the single-phase boundary layer, when co and 
T are independent variables, has been solved by Minkowycz & Sparrow (1969)• 

NUMERICAL TREATMENT 

The equations of the condensation boundary layer must be supplemented by appropriate 
boundary conditions. In the past, two kinds of conditions to be fixed in the main flow have been 
used• The first consisted of fixing the vapour mass fraction co~ and the temperature T~ : then the 
total pressure was implicitly expressed by [18], with the vapour saturation pressure corresponding 
to temperature T~ (Sparrow et al. 1967)• The second consisted of fixing the total pressure and the 
temperature, the vapour mass fraction being explicitly calculated from [18] (Hijikata & Mori 1973; 
Legay-Desesquelles 1984; Legay-Desesquelles & Prunet-Foch, 1985, 1986)• Herein, the former 
conditions are imposed, thus the main flow conditions are as follows: 

u = u ~ ,  T = T ~ ,  co=co~, ~ = ~ .  [23] 

The boundary conditions at the wall are fixed in the following way: 

u~ = O, vv = O, Tv = Tw. [24] 

Hereafter, only stationary processes will be considered. If the region near the leading edge is 
excluded, a self-similar transformation may be applied to the system of condensation boundary 
layer equations. It reduces the system to a system of ordinary differential equations. The 
transformation is defined as follows: 

for  the dispersed, two-phase, two-component boundary layer, 

F u~ 31'2 
' 

q' = (us vx)l"2F(~); [25] 

and 

.for the liquid f i lm, 

= F  u~. ] I.2 

" L (v -~-~ j  , 

TF = (u~ vL x )l'2f(rl ); [26] 

where v is the kinematic viscosity. Transformation [25, 26] has been successfully applied to a 
single-phase condensation boundary layer by Sparrow et al. (1967) and it will prove to be efficient 
for a dispersed, two-phase, two-component boundary layer• Application of [25] to [3]-[6] leads to 
the following ordinary differential equations for a dispersed, two-phase, two-component boundary 
layer: 

tit l tt F + = F F  =0, [27] 
2 

1 
" +  ~ Sc Fq" = 0 [281 

and 

f l ' = ( l  -Le)co -coio'co, L Prco~ " - - '  

where Sc is the Schmidt number, Pr is the Prandtl number, ' denotes the ~ derivative and 

[29] 

CO D (.Di 

CO~ - -  COi 
q~ = [301 
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The liquid film equations [9HI 1] are easily solved with the aid of [26] in terms of q, f(r/) variables 
in the following way: 

l . 2 
f(rl) = 5 f  w (0)q [3 I1 

and 

T -  Tw =--,q [32] 
T, -Tw rl6 

where f~(0) is the second derivative of f on the wall and r/6 is the value of  q for y = 6. 
To transform the interface balance equations [12]-[15] and continuity conditions [16] by means 

of [25] and [26] the following steps are taken. Transformation of the mass balance equation [12] 
with the aid of [31] yields the following differential equation for film thickness: 

d6 1 62 I p (WE) 12 F(0) 

fi dx 4 x - 2 PL Ur. f ' ,(0)" [33] 

It is easily solved to result in 

x] '2 
The interface momentum balance equation is transformed to the following form: 

Rf" (O) = F"(O), 

where 

[34] 

[35] 

thermal energy, 

where 

I F ( 0 ) I I - ~ - t  2 ( I - - ( D i )  ] J.L(TI --  Tw) I [38] 
pDL(T,)eJ,(T,) = ULL(T,) x/Rp~ " 

~6 L F (0)3 " 

Continuity condition [16] takes the following form: 

F'(O) = [2F(O)F"(O) ] ':2 • [39] 

In Sparrow et al. (1967) it was assumed that F ' ( 0 ) =  0. Usually this assumption is acceptable. 
However, in the case (e.g. high pressure) where R is not very high it can yield incorrect results. 

and 

pL ]./L 
R -  

P# 

Equation [35] will be used to eliminate f~(0) from [34]. The following equation is then obtained: 

[ F(O)VLX] ''2 
6 ( x ) =  2F,,(0) ~ d  ' [36] 

The film thickness is expressed in terms of the interfacial parameters of the dispersed, two-phase, 
two-component boundary layer, F(0) and F"(O). The interfacial balance equations of  mass of the 
non-condensing gas [14] and of thermal energy [15] are transformed to the following forms: 

mass qf non-condensing gas, 

I t o ~  - wi 
5 ScF(0) - ~ --~o~ ~'(0); [373 
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Finally, the main flow conditions [23], together with the definition [30] of  ¢,, result in the following 
conditions for variables F, qB and ~: 

F ' ( o ¢ ) = l ,  ~ ( 0 ) = 0 ,  ~ ( c ~ ) : l ,  ~ ( o o ) : £ 2 ~ .  [40] 

The thin film approximation ([9]-[11]) involved linear profiles of  velocity and temperature, and 
consequently it enabled us to eliminate the film variables. Thus, the problem is reduced to solving 
only the equations of  the dispersed, two-phase, two-component boundary layer [27]-[29], sup- 
plemented by non-linear boundary conditions [37]-[40] and by [18], which relates the temperature 
to the vapour mass fraction on the saturation line. The sixth-order system of  ordinary differential 
equations [27]-[29] was solved by means of a fourth-order Runge-Kut ta  method. A shooting 
method was chosen to convert the boundary value problem to an initial value problem, which was 
iteratively solved. The model equations in this paper and the ones in our previous report 
(Matuszkiewicz e t  al .  1989) are slightly different but the results we obtained here are generally not 
different. 

R E S U L T S  A N D  D I S C U S S I O N  

By way of  example, calculations were made for a s team-air  mixture (Le < 1): they were done 
for one value of the main stream temperature T~ --- 373 K and three values of  the vapour  mass 
fraction to~ = 0.3, 0.6 and 0.9. One value of the main stream droplet mass fraction has been chosen, 
i.e. D~ = 0 ,  as was done by Hijikata & Mori (1973), Legay-Desesquelles (1984) and Legay- 
Desesquelles & Prunet-Foch (1985, 1986). The range of  temperature differences (T~ - Tw) was 
between 5 and 30 K. 

First of  all, the assumption T, = Tw, adopted by Hijikata & Mori (1973), Legay-Desesquelles 
(1984) and Legay-Desesquelles & Prunet-Foch (1985, 1986), was checked. Figure 2 shows the graph 
of the non-dimensional temperature difference between the interface and the wall as a function 
of the overall temperature difference (T:,~- Tw), for three values of  the main stream vapour 
mass fraction. The temperature difference between the interface and the wall does not depend 
strongly on the overall temperature difference but it does depend strongly on the main stream 
vapour mass fraction. It is to be concluded that the assumption 7", = Tw is not acceptable unless 
the main stream vapour mass fraction is very low, e.g. < 0.1 for the range of  parameters examined 
herein. 

The heat flux transferred to the wall is shown in figure 3. The results of  calculations are expressed 
in terms of the quantity Nu/(Re) ~.2 vs the temperature difference (T~ - T,),  where Nusselt (Nu) 
and Reynolds numbers (Re) are defined in the following way: 

Iqlx [41] 
N u -  2L(T~ - T~) 

0.6" 
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0 o ~'o zo ~o ,o  T. -  T. 

Figure 2. Variation of (T, - T,,)/(T~ - T~.) with (T:~ - T,) for a steam-.air system; T~ = 373 K. ~ 
oJ,~. = 0.9( ), ~:~ =0.6 ( . . . .  ), to,, =0.3 ( . . . . .  ). 
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and 
U0~X 

Re - , [42] 
VL 

where q is the heat flux. 
When the system of differential equations [27]-[29] is solved, the quantity Nu/(Re) ~'2 is easily 

calculated from the following formula: 

x /~e  = F(0) _] T, 2 ~ "  [43] 

The results reveal that the condensation heat flux is reduced as the vapour mass fraction 
decreases (figure 3), a phenomenon which has been known for a long time and calculated for a 
single-phase boundary layer by Sparrow et al. (1967). 

The most striking results of this paper concern the profiles of droplet mass fraction. As shown 
above, the droplet mass fraction decreases as the interface is approached in the case of a steam-air 
mixture (Le < I). Those results are valid for small temperature differences. So, ifQ,. = 0 is imposed 
for solving the problem ([27]-[29]), as has been done by previous authors (Hijikata & Mori 1973; 
Legay-Desesquelles 1984; Legay-Desesquelles & Prunet-Foch, 1985, 1986), negative values of 
droplet mass fraction are expected. The results of the calculations shown in figures 4--6 reveal this 
strange feature. Even for 30 K temperature differences the droplet mass fractions are negative in 
the external part of the boundary layer. Of course, negative values of droplet mass fraction are 
physically meaningless. However, it may be concluded that vapour is superheated in the region 
where the droplet mass fraction was found to be negative. The negative values of droplet mass 
fraction may be considered as a qualitative measure of vapour superheat. For l0 K temperature 
differences, vapour is superheated all through the boundary layer. For 20 and 30 K temperature 
differences, vapour is superheated in the external part of the boundary layer and droplets are 
actually present near the interface (with the exception of o)~ = 0.9). These numerical results are 
qualitatively confirmed by the experiments of Legay-Desesquelles (1984), where for co~ < 0.6 
droplets were observed only for temperature differences >20 K. Hence, the saturation condition 
is not to be imposed throughout the boundary layer for Le < 1 when there are no droplets in the 
main flow, i.e. Q~ = 0. Formula [22], confirmed by numerical results, enables us to determine a 
simple approximate criterion for the saturation condition to be applicable everywhere. It is obvious 
that restriction [8] should be satisfied all through the boundary layer. For Le/> I it is satisfied for 
all values of the main stream droplet mass fraction. For Le < 1 it is satisfied only for 

mirl ~ > Q ~ ,  [441 
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where ~ "  is a certain minimum value of the main stream droplet mass fraction. This value is easily 
determined from [22] and [81 in the following way: 

• , e ( T ~ -  T , )  
= ( l  - , e )  [45] 

For Le <1 and flo~ < ~ ' "  the saturation condition is not to be imposed throughout the 
condensation boundary layer. 

If condition [44] is not fulfilled for Le < 1, four different cases are possible: 

1. The vapour is superheated all through the condensation boundary layer (for 
~ = 0, e.g. figure 4). 

2. The condensation boundary layer splits into an external, single-phase sublayer 
and an internal, two-phase sublayer (for fl® = 0, e.g. figure 6). 

3. The condensation boundary layer splits into an external, two-phase sublayer and 
an internal, single-phase sublayer (for 0 < ~lo~ < fl~ n and low AT). 

4. The condensation boundary layer splits into three sublayers--an external two- 
phase sublayer, a central single-phase sublayer and an internal two-phase sublayer 
(for 0 < f ~  < fz~'n and high AT). 

To deal with one of these cases the set of equations [3]-[8], which is valid for a two-phase 
sublayer, has to be supplemented by a different set of equations valid for a single-phase sublayer. 
This set can be obtained by putting fl = 0 in [3]-[7]. Such a set of equations, with co and T retained 
as independent variables, has been solved by Minkowycz & Sparrow (1969). So, to obtain correct 
profiles of the droplet mass fraction and other physical quantities for Le < 1 and 0 ~< f]~ < Qmm 
it is necessary to solve a suitable set of equations in each sublayer, with boundary conditions [23] 
and [24] imposed at the main flow and at the wall. The boundaries between sublayers are not known 
and they have to be found by checking condition [8] in a two-phase sublayer and condition S ~ 1 
(S is the supersaturation ratio) in a single-phase sublayer. It is an extremely difficult numerical 
problem that will not be treated in this paper. 
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C O N C L U S I O N S  

By considering the forced convection condensation on a flat plate in the presence of  non- 
condensing gas and liquid droplets the following conclusions have been drawn: 

I. As the temperature decreases in the condensation boundary layer the droplet mass 
fraction decreases slightly in an external part of the boundary layer and increases 
rapidly near the interface for Le < I. In this case the saturation condition cannot 
be fulfilled all through the boundary layer unless the main stream droplet mass 
fraction has a certain minimum value. For Le > 1 the droplet mass fraction 
increases everywhere and the saturation condition can be fulfilled throughout the 
boundary layer, regardless of  the value of  the main stream droplet mass fraction. 

2. The heat flux transferred to the wall is only slightly influenced by droplets present 
in the condensation boundary layer. 

3. The assumption T, = T~, which has been made in a few recent papers, is not 
acceptable unless the vapour mass fraction is very low, e.g. <0.1 for a steam-air 
mixture. 
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